КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ: ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ - определение. Что такое КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ: ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ: ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ - определение

СТРАНИЦА ЗНАЧЕНИЙ
Цветные металлы (футбольный клуб)
Найдено результатов: 6526
КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ: ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ      
К статье КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ
Цветные металлы и их сплавы широко применяются в технике. К наиболее важным цветным металлам относятся алюминий, медь, магний, никель, титан и (в меньшей степени) мягкие металлы - олово, свинец и цинк. В сплавах часто используются такие металлы, как сурьма, висмут, кадмий, ртуть, кобальт, хром, молибден, вольфрам и ванадий. Последние четыре металла условно относят к ферросплавам, хотя они могут содержать железо лишь в виде примеси.
Алюминий. Чистый алюминий широко применяется там, где важное значение имеет высокая электропроводность, например в проводах для линий электропередачи (ЛЭП). Алюминиевые сплавы пригодны также для опор ЛЭП, поскольку конструкции, выполненные из таких сплавов, стойки к атмосферной коррозии.
Алюминиевые сплавы можно разделить на упрочняемые и не упрочняемые термической обработкой. Сплавы, упрочнение которых термической обработкой не удается, обычно содержат кремний, магний и марганец. Сплавы же, упрочняемые термической обработкой, содержат медь, цинк и определенные сочетания магния с кремнием. Предел текучести сплавов, не упрочняемых термообработкой, составляет 50-280 МПа, а их прочность на растяжение лежит в пределах от 100 до 350 МПа. Предел текучести термообрабатываемых сплавов может превышать 500 МПа, а прочность на растяжение - 550 МПа. Термообрабатываемые сплавы (из которых наиболее известны дуралюмины и авиаль) чаще всего применяются в аэрокосмической промышленности, где требуется высокая прочность при малой массе. Но алюминиевые сплавы широко применяются и практически во всех транспортных средствах - легковых автомобилях, автобусах, железнодорожных вагонах и даже морских и речных судах.
Медь. Поскольку медь довольно легко восстанавливается из руды, она явилась одним из первых металлов, которыми научился пользоваться человек. Это произошло, по-видимому, раньше 4000 до н.э. У меди высокая электропроводность, и она была первым материалом, примененным для передачи электричества. Она до сих пор широко применяется в бытовой электропроводке и электрооборудовании. Предел текучести чистой меди составляет около 170 МПа, а прочность на растяжение - около 280 МПа; относительное удлинение обычно превышает 35%. Холодная прокатка и волочение повышают указанные характеристики меди. Жесткость меди примерно вдвое меньше, чем стали.
Медь чаще всего применяется в виде сплавов, в первую очередь с цинком и оловом. В сплавах с цинком, называемых латунями, содержание цинка составляет от 2 до 40%. Прочность латуней, как правило, повышается с увеличением содержания цинка. Весьма распространена т.н. патронная латунь с 30% цинка. Ее предел текучести составляет ок. 280 МПа, а прочность на растяжение - ок. 530 МПа. Сплавы меди с оловом, называемые бронзами, были одними из первых медных сплавов, использовавшихся человеком. Содержание олова в бронзах - от 2 до 30%. Используются также тройные сплавы меди с оловом и цинком. Другие широко применяемые сплавы меди - с никелем или с никелем и цинком. Такие сплавы типа нейзильбера отличаются высокой коррозионной стойкостью, а также прочностью.
Высокопрочные медные сплавы содержат алюминий, кремний или бериллий. Путем термической обработки их предел текучести можно повысить до 1000 МПа и более, а прочность на растяжение - до 1300 МПа. Эти сплавы применяются там, где требуются коррозионно-стойкие, немагнитные, неискрящие материалы с высокими электропроводностью и прочностью. Многие медные сплавы, особенно с оловом и никелем, предпочитаются инженерами за их коррозионную стойкость в таком оборудовании, как теплообменники, перегонные аппараты, испарители, конденсаторы и трубопроводы. В бытовых системах для горячей воды часто используются медные трубки.
Магний. Как и алюминий, магний широко применяется в промышленности благодаря своей низкой относительной плотности (около 1,7, меньше, чем у алюминия). Он часто применяется в виде отливок, и в этом случае его предел текучести составляет от 85 до 140 МПа, а прочность на растяжение - от 140 до 280 МПа. У магниевого проката (прутка, профилей, листа) предел текучести и прочность на растяжение несколько выше. Магниевые сплавы менее пластичны, чем алюминиевые и медные (относительное удлинение составляет 4-15%). Наиболее важная область их применения - аэрокосмическая промышленность, где большие преимущества дает их легкость. Аэрокосмические магниевые материалы - это по большей части термообрабатываемые специальные сплавы. В сплавах с магнием чаще всего используются алюминий, марганец и цинк (обычно в малых количествах, хотя содержание алюминия может достигать 10%). После термообработки предел текучести таких сплавов может составлять до 310, а прочность на растяжение - до 390 МПа.
Титан. Титановые сплавы начали применяться в качестве конструкционных материалов лишь после Второй мировой войны. Производство титана затрудняется тем, что он очень активно взаимодействует с кислородом, водородом и азотом, а также (при высоких температурах) почти со всеми материалами плавильных тиглей. Тем не менее в настоящее время выпускается и применяется целый ряд титановых сплавов. Благодаря своей легкости (плотность ок. 4,5 г/см3) и высокой прочности, превышающей прочность алюминиевых и магниевых сплавов, титановые сплавы находят применение в ответственных деталях аэрокосмической техники. Но титан довольно дорог, что ограничивает его применение. Технический титан имеет предел текучести более 400 МПа, прочность на растяжение от 500 до 630 МПа, относительное удлинение ок. 20%. Почти весь производимый титан используется в виде сплавов, улучшаемых термической обработкой. Обычные легирующие элементы титана - алюминий, ванадий, молибден и олово. Самый распространенный титановый сплав - с 6% алюминия и 4% ванадия - применяется в аэрокосмической промышленности. Его предел текучести составляет ок. 900 МПа, а прочность на растяжение - более 1000 МПа. Прочность этого сплава можно повысить путем сложной термообоработки. Будучи стойкими к некоторым кислотам, титановые сплавы применяются в соответствующей аппаратуре. Кроме того, такие сплавы находят применение как материалы трубных коммуникаций и арматуры, деталей корпуса и обшивки высокоскоростных военных самолетов.
Никель. Никель редко применяется в чистом виде, но его сплав с хромом и молибденом широко используется для высокотемпературных деталей и элементов конструкций. Такой сплав характеризуется высоким сопротивлением ползучести и высокой коррозионной стойкостью в диапазоне температуры от 800 до 1100. C. Типичное применение хромомолибденовых сплавов никеля - лопатки турбин и другие высокотемпературные компоненты. Никель применяется также в некоторых медно-никелевых сплавах для повышения коррозионной стойкости меди.
Другие металлы. Олово, цинк и свинец используются главным образом для повышения коррозионной стойкости сплавов, причем олово и цинк - чаще всего в виде антикоррозионных покрытий для стальных изделий. Принцип такой "протекторной" защиты в том, чтобы корродировало покрытие, а не сталь. Цинковые "гальванические" покрытия наносят электролитическим осаждением. Свинец без дополнительных компонентов используется в качестве коррозионно-стойкого материала в виде труб и листов. Свинец применяется вместе с оловом в виде припоев, особенно в электронной промышленности. Содержание свинца в таких припоях может составлять от 50 до близкого к 100%. Цинк используется в легкоплавких сплавах для литья под давлением в некоторых отраслях промышленности, особенно в автомобильной. Прочность этих сплавов невысока, зато они пригодны для литья в сложные формы. См. также СПЛАВЫ; МЕТАЛЛЫ ЧЕРНЫЕ; ПОРОШКОВАЯ МЕТАЛЛУРГИЯ.
Пернатые хищники и их охрана (журнал)         
Пернатые хищники и их охрана
Пернатые хищники и их охрана / Raptors Conservation — рабочий бюллетень о пернатых хищниках Восточной Европы и Северной Азии (ISSN 1814-0076 (Print), ISSN 1814-8654 (Online)). Журнал учрежден в 2005 г. межрегиональной благотворительной организацией «Сибирский экологический центр» (Новосибирск, Россия) и научно-исследовательской общественной организацией «Центр полевых исследований» (Н.Новгород, Россия). С 2015 г. издается ООО «Сибэкоцентр». Журнал публикует новости изучения и охраны пернатых хищников, обзоры ресурсов по пернатым хищникам, интервью с учеными, занимающимися вопросами и
Лже-Романовы         
  • Самая известная из лже-Анастасий — Анна Андерсон
  • [[Дом Ипатьева]] — место расстрела царской семьи
  • Марк Полсрест, один из претендентов
  • Надежда Иванова-Васильева
ЛЖЕ-РОМАНОВЫ — ЯКОБЫ СПАСШИЕСЯ ОТ РАССТРЕЛА ЧЛЕНЫ СЕМЬИ ПОСЛЕДНЕГО РОССИЙСКОГО ИМПЕРАТОРА НИКОЛАЯ || И ИХ ПОТОМКИ. ЭТА ОБШИРНАЯ КАТЕГОРИЯ
Романовы, «спасшиеся от расстрела» и их потомки; Романовы, "спасшиеся от расстрела", и их потомки; Романовы, «спасшиеся от расстрела», и их потомки
Лже-Рома́новы — якобы спасшиеся от расстрела члены семьи последнего российского императора Николая II и их потомки. Эта обширная категория самозванцев начала появляться сразу после расстрела царской семьи в 1918 году. Потомки некоторых из них продолжают добиваться возвращения себе «законного имени» или даже российской императорской короны. По разным расчётам, всего романовских самозванцев, пользовавшихся бо́льшим или меньшим успехом у своих поклонников, во всем мире насчитывалось около 230 человекдокументальный материал «После расстрела (After the execution)
Цветные воинские части         
  • Изображение формы дроздовцев
  • Погоны офицера-корниловца
  • Павлов]] в марковской форме.
  • Изображение формы алексеевцев, 1919 г.
  • Харьковского отделения ОСВАГ]], [[1919 год]].
  • дроздовских частей]].
Цветные части; Цветные полки; «Цветные» полки; Цветные дивизии; «Цветные» дивизии; Именные полки; «Цветные» части
«Цветны́е» во́инские ча́сти — широко распространённое неофициальное, укрепившееся впоследствии в историографии и популярной литературе название белых именных полков, бригад и дивизий 1-й пехотной дивизии Добровольческой Армии и 1-го Армейского корпуса Добровольческой армии периода Гражданской войны в России по причине свойственных каждой из частей определенных цветов фуражек, погон, нарукавных знаков и шевронов (красного, чёрного, малинового, голубого)«Цветные» части ВСЮР:
Магнитно-твёрдые сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав

основной вид магнитно-твёрдых материалов (См. Магнитно-твёрдые материалы).

Прецизионные сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав
Прецизио́нные спла́вы (от  — точность) — группа сплавов с заданными физико-механическими свойствами. В эту группу, как правило, входят высоколегированные сплавы с точным химическим составом.
Прецизионные сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав
(от франц. précision - точность)

металлические сплавы с особыми физическими свойствами (магнитными, электрическими, тепловыми, упругими) или редким сочетанием физических, физико-химических и механических свойств, уровень которых в значительной степени обусловлен точностью химического состава, отсутствием вредных примесей, соответствующей структурой сплава. Большинство П. с. создано на основе Fe, Ni, Со, Cu, Nb. К П. с. относится ряд сплавов с аномалией свойств, среди которых особое место занимают сплавы с очень малым изменением физических параметров при изменении температуры, магнитного, электрического поля, механических нагрузок (например, Инвар, Элинвар, Манганин, Константан, Перминвар). Важное практическое значение имеют и сплавы, характеризующиеся, наоборот, весьма большим изменением физических параметров при изменении внешних условий (например, Пермаллой, Алюмель, Хромель, Копель, Магнитострикционные материалы, пружинные сплавы, термобиметаллы).

К П. с. относятся также сплавы, обладающие Сверхпроводимостью, сплавы с заданным значением физических параметров (например, Ковар, Платинит, Фернико), в том числе сплавы с разнообразным сочетанием свойств и сплавы, сохраняющие требуемые свойства в условиях агрессивных сред, вибрации, электрического разряда, радиации, глубокого вакуума и т.д.

П. с. - незаменимые материалы при изготовлении узлов особо чувствительных приборов и установок, уникальной экспериментальной и малогабаритной аппаратуры, различного рода датчиков, преобразователей энергии. Они применяются также в бытовой технике, например в телевизорах, радиоприёмниках, часах и т.д. П. с. являются основой прогресса точного приборостроения, автоматики и др. отраслей техники; изготовляются преимущественно в виде тонкой ленты и проволоки, а также в виде поковок, листов, прутков, полиметаллической проволоки и ленты, монокристаллов. Для достижения наивысшего уровня свойств П. с. необходимы, как правило, особые способы выплавки, деформирования, специальные режимы термической обработки, качественная отделка поверхности. П. с. требуют высокой культуры эксплуатации.

Лит.: Прецизионные сплавы. Справочник, М., 1974.

И         
  • 14px
  • 16px
  • 16px
  • Аудио «И»
  • логотипе Википедии]]
БУКВА КИРИЛЛИЦЫ
И (буква); Буква И; Иже; И (кириллица); И, буква русского алфавита; И восьмеричное
I

десятая буква русского алфавита. Видоизменённая старославянская кирилловская буква Н ("иже"), восходящая к букве η греческого унциала. Цифровое значение кирилловской Н - 8, глаголической - 20. В дореволюционном русском алфавите по цифровому значению называлась "и восьмеричное". Буква "И" обозначает нелабиализованную гласную переднего ряда верхнего подъёма. После твёрдых шипящих согласных "ш" и "ж" букве "И" соответствует в произношении гласная "ы" ("жить", "жизнь" и др., где по правилам правописания не должна писаться буква "ы") и после твёрдой аффрикаты "ц" - в основе многих заимствованных слов ("цифра", "циркуль", "медицина", "Франция" и др.).

II

ицзу (самоназвание "чёрных И" - носу, других И - ачжэ, аси и др.), народ в Южном Китае. Живут главным образом в районе Ляншань (провинция Сычуань). Численность в КНР около 4,7 млн. чел. (1970, оценка), несколько тыс. живёт в ДРВ. Язык И относится к тибето-бирманской ветви китайско-тибетской семьи. У И сохраняются древние традиционные верования. Предками И были племена цуань (3 в. н. э.). В 7 в. шесть племён (чжао) образовали государство Наньчжао, существовавшее до середины 13 в. В этот период были созданы памятники культуры, эпические произведения, иероглифическая письменность. В районе Ляншаня у И до 50-х гг. 20 в. сохранялись специфический рабовладельческий уклад, племенная организация и касты. Рабовладельцами была вся каста "носу" - "чёрные И", рабами - касты "цюйно", "ацзя" и "сяси". Право на племенную организацию (защищала жизнь и интересы своих членов) имели только "носу" и "цюйно". Основное занятие южных И - мотыжное земледелие, северных и западных - также скотоводство.

Лит.: Уиннингтон А., Рабы прохладных гор. пер. с англ., М., 1960; Народы Восточной Азии, М. - Л., 1965.

Р. Ф. Итс.

И         
  • 14px
  • 16px
  • 16px
  • Аудио «И»
  • логотипе Википедии]]
БУКВА КИРИЛЛИЦЫ
И (буква); Буква И; Иже; И (кириллица); И, буква русского алфавита; И восьмеричное
I
1. Употр. в начале восклицательных, вопросительных и повествовательных предложений употр. для подчеркивания связи с предыдущими высказываниями.
И как умел он рассказать! И вы согласились?! И вы еще будете спорить?!
2. начинает собою предложение эпического, повествовательного характера для указания я на связь с предыдущим, на смену событий.
И настало утро. И грянул бой.
3. Одиночный или повторяющийся, соединяет однородные члены предложения, а также одиночный или повторяющийся, соединяет части сложносочиненного предложения.
Появились надежды, и он вновь стал весел.
II
Употр. как усилительная, для подчеркивания слова, перед которым стоит, в знач. даже.
И сам не рад. Не могу и подумать об этом.
III
В начале предложения в реплике выражает увещевание или несогласие.
И, полно!
иже         
  • 14px
  • 16px
  • 16px
  • Аудио «И»
  • логотипе Википедии]]
БУКВА КИРИЛЛИЦЫ
И (буква); Буква И; Иже; И (кириллица); И, буква русского алфавита; И восьмеричное
'ИЖЕ, мест. (·церк.-слав. - который, которые). Только в выражении: и иже с ним (с ними) - и те, которые с ним (с ними); и его (их) единомышленники, присные (во 2 ·знач.; ·книж. ирон., обычно о лице из враждебного лагеря). "Власть должна принадлежать трудящимся и, хотя это неприятно хищникам, и бездельникам и всем "иже с ними", это неизбежно будет." М.Горький.

Википедия

Цветные металлы (значения)

Цветные металлы:

  • Цветные металлы
  • Цветные металлы (журнал)
  • Цветные металлы (футбольный клуб, Балхаш)
  • Цветные металлы (футбольный клуб, Каменск-Уральский)
Что такое КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ: ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ - определение